Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells
نویسندگان
چکیده
BACKGROUND Children with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL. METHODS Fourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo®, ALDH activity by ALDELUORTM, and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo™ Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing. RESULTS Ara-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright "stem-like" populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the β5 proteasome subunit. BTZ-resistance conferred increased resistance to Ara-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition. CONCLUSIONS We provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL.
منابع مشابه
The effect of the proteasome inhibitor bortezomib on acute myeloid leukemia cells and drug resistance associated with the CD34+ immature phenotype.
BACKGROUND Proteasome inhibition represents a promising novel anticancer therapy, and bortezomib is a highly selective reversible inhibitor of the proteasome complex. Acute myeloid leukemia (AML) is an immnunophenotypically heterogeneous group of diseases, with CD34(+) cases being associated with drug resistance and poor outcome. We investigated the effects of bortezomib on the growth and survi...
متن کاملBortezomib has little ex vivo activity in chronic myeloid leukemia: individual tumor response testing comparative study in acute and chronic myeloid leukemia
AIM OF THE STUDY Resistance to imatinib is one of the most important issues in treatment of chronic myeloid leukemia (CML) patients. The objective of the study was to analyze the ex vivo drug resistance profile to bortezomib and 22 other antileukemic drugs, including three tyrosine kinase inhibitors (TKIs), in CML in comparison to acute myeloid leukemia (AML). MATERIAL AND METHODS A total of ...
متن کاملCytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1.
Bortezomib (Velcade) is used widely for the treatment of various human cancers; however, its mechanisms of action are not fully understood, particularly in myeloid malignancies. Bortezomib is a selective and reversible inhibitor of the proteasome. Paradoxically, we find that bortezomib induces proteasome-independent degradation of the TRAF6 protein, but not mRNA, in myelodysplastic syndrome (MD...
متن کاملPhase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia.
PURPOSE Proteasome inhibition results in cytotoxicity to the leukemia stem cell in vitro. We conducted this phase I study to determine if the proteasome inhibitor bortezomib could be safely added to induction chemotherapy in patients with acute myelogenous leukemia (AML). EXPERIMENTAL DESIGN Bortezomib was given on days 1, 4, 8, and 11 at doses of 0.7, 1.0, 1.3, or 1.5 mg/m(2) with idarubicin...
متن کاملCellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities.
Specific cytogenetic abnormalities predict prognosis in childhood acute myeloid leukemia (AML). However, it is unknown why they are predictive and whether this is related to drug resistance. We previously reported that Down syndrome (DS) AML was associated with favorable resistance profiles. Here, we successfully analyzed drug resistance and (cyto-) genetic abnormalities of 109 untreated childh...
متن کامل